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Abstract. Thenonsmoothnessisviewed by many peopleasat |east an undesirable (if not unavoidable)
property. Our aim here is to show that recent developments in Nonsmooth Analysis (especialy in
Exact Penalization Theory) allow one to treat successfully even some quite “smooth” problems by
tools of Nonsmooth Analysis and Nondifferentiable Optimization. Our approach is illustrated by
one Classical Control Problem of finding optimal parameters in a system described by ordinary
differential equations.
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1. Introduction

The problem of reducing a constrained mathematical programming problem to an
unconstrained one has been given a great deal of attention. In most cases such a
reduction is performed with the help of so-called penalty functions. At present the
Theory of Penalization is well developed and widely used (see, e.g., [1-4]).

The exact penalization approach is most interesting and elegant but it generally
requires solving a nonsmooth problem even if the original one was smooth. How-
ever, recent developments in Nondifferentiable Optimization give some hope that
these difficultieswill be overcome. To be able to reduce a constrained optimization
problem to an unconstrained one via exact penalization it is suitable to represent
the constraining set in the form of equality, where the function describing the set
must satisfy some conditions on its directional derivatives (or, in general, on its
generalized directional derivatives) (see[3, 5)]).

In the present paper we show how to describe the constraints — given in the
form of differential equations — by a (nonsmooth) functional whose directional
derivatives satisfy the required properties (see Section 2). In Section 3 we treat
one parametric optimization problem. This problem is reduced to a nonsmooth
unconstrained optimization problem. It makesit possible to construct a numerical
algorithm for the unconstrained optimization problem just allowing one to solve
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the original parametric optimization problem. Then, by making use of necessary
optimality conditions (for anonsmooth problem) it is shown that the conditionswe
obtain are equivalent to the well-known ones.

2. Systemsof differential equationsdepending on parameters

Letz € R", A € R™, t € [0,T], T > 0Ofixed, f : R" Xx R™ x R — R"
be differentiable with respect to « and A. The functions f, 9f/0x, 0f /0A are
assumed to be continuous on R™ x R™ x R. Consider the following system of
differential equations, depending on the parameter A € R™:

@ = f(z,A,t), @
z(0) = xo. 2

Let C[0,T] be the class of n-dimensional vector functions z(¢) continuous on
[0, T']. Consider the set

Q= {2, A]|z € C[0,T], A € R™ : (2, A4) = 0}, 3

where

oz, A) = [/OT (z(t) _f <xo+/ot o(r)dr, A,t>>2 dt] " @)

Note that ¢(z,A) > 0Vz € C[0,T], YA € R™. If [z, A] € Q, then obviously
the function z(t) = zo + fg z(7) dr satisfies (1), (2), and vice versa, if z(t) isa
solution of (1), (2) then [z, A] € Q (with z(t) = f(z, A,t)). Thus, the problem
of finding a solution of (1), (2) for some fixed A € R™ is equivalent to finding a
z € C[0,T] suchthat p(z, A) = 0.

Now let us study the differentiability properties of the function . First of all,
consider the case:

p(z,4) > 0. ()

Let g := [v,q], where v € C[0,T],q € R™. Put ||g]| := max{]o]., |qll} where
o]l := [fy (v())2dt]"/?, |lq|| := V/q2. Here, as usud, a? := (a,a). The pair g
will be called a direction (in the space C[0,T"] x R™). Let us find the directional
derivative of ¢ at some point [z, A] satisfying (5) in adirection g. By definition

1
@'z Aig) =1im = fp(z +av, A+ ag) — ¢(z, A)] (6)
We shall prove, that this limit does exist, and find its value.

LEMMA 1. If p(2,A) > 0 (i.e, [z, A] € ), then the function ¢ is Gateaux
differentiable at [z, A].
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Proof. We have

o(z + av, A + aq)

/OT< )+ au(t <x0+/ T)+av(r))dr, A+aq,t ))2 dt]
~{[[0-

+ {v(t)

1/2

dTAt>

/ olr)dr — 271 Ca U

Here 0f (t)/0x = Of(x ()A t)/0z, Of(t)/0A = Of(x(t),A,t)/0A. Since
h(a) = [(a + ab)FY? = (a? + 2a(a,b) + a?b?)Y2, then B/ (0) = (a,b)/|al.
Therefore (7) implies

e aig) = [ (w000 - 2O [oeyar 20 ) w @

/()

1 t
wlt) = = <z(t)— f(xo+ [ 2() dr,A,t)). ©)
Itisclear that
T 1/2
w|| == Vo (w(t))zdt] —1 (10)

In (8) let us set (an * as apex denotes transposition):

B = /OT (ag—f) /Ot v(T) dT,w(t)> dt
= [ ([ v (B0) ) (a

Let usintegrate (11) by parts:

t
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_/OT <U(t), /Ot (%ﬁ:)y w(7) d7> dt
_ /OT <U(t), /tT (8];—;7))* w(r) d7'> dt . (12)
Substituting (12) in (8) we get
detig) = [ <v(t>,w(t> [ (EDY we d7> a

— (/OT (35—1(4,5))* w(t) dt,q> = (Vep,9), (13)

w(t) — /tT (ag—g))*w(f) dT,—/OT (%?)* w(t) dt] (14)

and (V, g) will be referred to as “the scalar product” of V¢ and g. Since (13)
is linear in g and the complement of €2 is open, we conclude that ¢ is GateaLix
differentiable at [z, A] with “the gradient” V¢ (in the space C[0, T x R™). This
compl etes the proof. O

where

V=

LEMMA 2. Thereexistsa > 0 such that
Hgﬁi:nl(Vgo,g) < —a<0 V[zA] €. (15)
Proof. Let usprove, first of all, that
Ve #0. (16)

Here O is the zero element of the space C[0, 7] x R™. Assuming the opposite, we
have:

w(t) — /tT <a‘gg)>*w(7’) dr =0, Vtel0,T]. (17)

Then (17) implies w(t) = 0, V¢ € [0, T which contradicts (10). Thus (16) holds.
Suppose now that (15) isinvalid. Then, there exists a sequence [z, Ay such that

where

Vor = a0~ [ (20 sy [ (240 wira],
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ofk(t) _ Of (zk(t), Ak, 1) Ofk(t) _ Of (zx(t), Ay, )

ox ox " 0A 0A ’

%m=m+f%mm

wi(t) = m (zk(t) g (xo+/ot () dT,Ak,t>> .
Note that

[Jwg]| = 1. (19)
(18) implies
[l =, (20)
where
T T *
e(t) = wn(t) - [ (%) wi(r) dr. (21)

Relations (20) and (21) yield (due to the continuous dependence of the solutions of
integral equations on the right-hand sides) ||w || — O which contradicts (19). This
completes the proof. O

Now consider the case where p(z, A) = 0. Note that

o(z, A) = max ( <:vo—|— / ) dr, A, t> ()) it (22)

lo]]=1

If p(z,A) = O, then h(t ) = 2(t) — f(zo+ f§ z(1)dr, A, t) = OVt € [0, T7]. Since

2(t) + av(t) (xo-i-/ (2(7) + av(r dT,A—i—aq,t):

— h(t) 4+ {v(t)— L /Otv(f)dT 8§£1) }+o(a),

then (see (22)):

o AN (. of@) [ of (t)
©'(z,A;9) = ||rp”a:)(l A <v(t),v(t) ~ s /0 o(T)dT — 8—Aq> dt.

(23)
Using the same procedure asin (11)—(12), from (23) we get:

J (2 A.g) = mac [/OT (v(t),v(t)—/tT (%S))*v(f) dT> dt
_ (/OT (%{Ef) q>* v(t) dt,q)] ) (24)

(23) and (24) show that the following proposition holds.
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LEMMA 3. If ¢(A, z) = 0, then the function ¢ is directionally differentiable at
[A, z]; it is even subdifferentiable, i.e.

¢ (z,4;9) = e (G, 9), (25)
where
dp(z,A) = = [v*,¢"] : v* € C[0,T],q* € R™,v*(t) = v(¢)
T rof(t)
ﬂ (%) v
T
g = /o <8aff > (t)dt,v € C[0,T], 7| < 1} (26)

3. Parametric optimization problems: the case of a smooth functional

Toillustrate our approach let us consider the problem of minimizing the functional

T
_ /0 F(a(t, A))dt, (27)

wherez(t, A) isasolution of (1), (2) with A € R™, and F'(z) isasmooth function.
It follows from Section 2 that the above problem is equivalent to the problem of
minimizing the functional

T t

(z, A) :/0 F (:L"o-l-/o z(7) d’T) dt (28)
subject to the constraint

p(z,4) = 0. (29)

Thefunctional ¢(z, A) does not depend on A explicitly (it dependson it implicitly
via(29)). It is easy to see that

¢ (z,A;9) = lim E [/OT F <:vo + Ot (2(7) + av(T)) dT) dt — qﬁ(z,A)]
_ [T (oF(z(t))
- /0 <T’ v(t)) dt
i.e. ¢ is Géteaux differentiable and its “gradient” (in the space C[0, T] x R™) is
V(z, A) = {%, om} . (30)

Arguing asin [3-5] we are able to prove the following:
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THEOREM 1. If ¢ isLipschitzon C[0, T] x R™, then there existsa Ao > 0 such
that for any A > )Xo the set of minimizersof ¢ ontheset Q@ = {[z, A]|¢(z, A) = 0}
coincideswith the set of minimizers of the function

on the entire space C[0, T'] x R™.

Thus, if [z*, A*] isaminimizer of ¢, (z, A) (for A > Xo), then ¢(2*, A*) = 0
and ¢ attains its minimum on Q at [2*, A*]. This aso implies that the function
z*(t) = zo + [§ 2*(7) dr satisfiesthe system of differential equations

x(t) :f(:L"(t),A*,t), x(O) = Zo,

and the functional Z(A) attainsits minimum at A*.
The function v (z, A) is subdifferentiable and its subdifferential (see[6]) is

where V¢ is defined by (30) and 0 by (26) (since p(z*, A*) = 0).
Applying the necessary optimality condition (see [6]) we get

0 € dy (2*, A*). (33)

Thus, it follows from (33) that there existsav € C[0, T] such that ||v|| < 1,

w B — /tT <8“2S)>*T)(7') dT] —0, Vte[0,T], (34)
T roft)\* _
—A/O <8—A> 5(t) dt = 0, . (35)
Here
of(t) _ of(«"(t), A1)  Of(t) _ Of(z*(t), A", )
Oz Oz ’ 0A 0A '

Replacing Ao (t) by v(t) we conclude from (34) and (35) that, if z*(t) = z(t, A*)
isaminimizer of (27), then there exists avector function v(¢) € C[0, T] such that

w +o(t) — /tT (823))*1}(7) dr=0 Vtel[0,T] (36)

and

/OT (%?)*v(t) dt = 0,,. (37)
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If F(z) is twice continuously differentiable, then (36) can be rewritten in the
following “differential” form

(VO d (OFE ()
o0 =-(%57) w0 -5 (%5") 38)
o(r) = —2EE (1) (39)

oz

The function v is uniquely defined by (36) (or, equivalently, by (38)—(39)).
Finally, we can state the following necessary optimality condition.

THEOREM 2. If A* € R™ isaminimizer of Z(A) subject to the system of differ-
ential equations (1)—(2), then the function »(t) € C[0, T'| defined by (38) and (39)
satisfies (37).

Remark 1. Itisnecessary to notethat theideaof reducing the problem of minimizing
the functional (27) on the solutions of the system (1), (2) to an infinite sequence
of unconstrained smooth problems (using in (3) the function ¢?(z, A) instead of
¢(z, A)) was proposed by A.V. Balakrishnan [7] and successfully used by G. Di
Pilloand L. Grippo [8] (seedso[9]).

Remark 2. Of course, Theorem 2 is well-known from Control Theory (see [10]).
The most interesting here is that the problem of finding “optimal” parameters A
(the problem of minimizing (27) is a constrained optimization problem since A is
supposed to satisfy (1), (2)) is reduced to an unconstrained optimization problem
(see Theorem 1) and now one can use numerical methods for unconstrained (but
Nonsmaoth) optimization (see [6]).

Remark 3. Thereis no difficulty to conceive the application of the above approach
to the case where the functional (27) is itself nonsmooth. Then, one obtains some
new results which do not follow from the Classical Optimal Control Theory. The
way isopen to do this.

Remark 4. The problem of minimizing the functional (27) on the solutions of the
system (1), (2) (problem P) can a so beformulatedin thefollowing equivalent form:
minimize (with respect to [z, A]) the functional (28) subject to the constraints

(:po + / T)dr, A t) =0 Vtelo,T) (40)
Herez(t) = xo-|-f0 z(1) dr. Now thefollowing classic problem can be considered:

given a solution [z*(t), A*] of problem P, does a function A(t) € C]0,T] exist
such that the point [2*(t), A*] isacritical point of the Lagrangian function

L(A 2, A) =/0 [ (:vo—i—/oz(T)dT>
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+ <>\(t),z(t) _f <xo+/ot () dT),A,tm dt?

The answer is positive and follows from Theorem 2: such a (Lagrangian multi-

plier) function isthe function \(¢) = v(t), satisfying (38)—39).
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